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A B S T R A C T

Understanding how a firm’s scientific capability influences its

technology development has important implications on the firm’s

research and development (R&D) strategies. However, the current

literature reveals a puzzling outcome in its empirical investigations

on the science–technology relationship. While many studies show

the positive influence of a firm’s scientific capability on its

technological performance, a few others indicate that if a firm

focuses its attention more on cutting edge science, its overall

technological performance will suffer. We suggest that these

findings can be reconciled by conceptualizing and measuring the

scientific capability of the firm differently. This paper attempts to

demonstrate how different notions of scientific capability are

associated with different performance outcomes. Furthermore, a

firm’s scientific capability facilitates the integration of new

knowledge to produce valuable technologies when a firm broadens

its search for new knowledge. The paper highlights the nuances of

conceptualizing and measuring the firm’s scientific capability in

two different ways: number of scientific publications and non-

patent references. The findings also shed light on the mechanism

through which science accelerates technological progress inside a

firm.
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1. Introduction

Scholars have long believed that scientific progress is a vital factor driving technological innovation
and economic growth. At the macro level, studies have shown that total expenditures on research and
development (R&D) and scientific employment drive a country’s GDP (Mansfield, 1972; Sveikauskas,
1981; Adams, 1990). At the firm-level, scientific efforts and R&D efforts are known to improve firm
capability and firm performance (Griliches, 1980; Henderson and Cockburn, 1994; Freeman and Soete,
2009). At the invention level, science-based patents originating from university labs are recognized to
be more valuable (Jaffe and Trajtenberg, 1996; Gittelman and Kogut, 2003; Siegel et al., 2004).
Therefore, understanding the relationship between science and technology has important
implications for research and development activities. This study attempts to extend this stream of
research by focusing on the science and technology relationship at the firm-level.

In explaining the relationship between science and technology, scholars have used the number of
scientific publications produced by a firm to measure its scientific capability (Gambardella, 1992).
While some studies have observed the positive influence of publication count on the technological
performance of firms as measured by patent outcome (Lim, 2004), others have demonstrated that
publication count is not associated with technological performance (Gambardella, 1995; Cockburn
and Henderson, 1998). Yet, another study shows that when a firm generates cutting edge science, as
represented by high quality publications, the technological performance of the firm will suffer
(Gittelman and Kogut, 2003).

Recently, a growing number of studies exploring the science–technology relationship are using
non-patent references in patents, i.e. citations of scientific publications, as an indicator of science
intensity in a firm’s capability or invention (Deng et al., 1999; Fleming and Sorenson, 2004; Sorenson
and Fleming, 2004; Sorenson and Singh, 2006). These scholars found that non-patent references have a
significant positive influence on technological performance in terms of patent outcome. However, a
couple of studies have raised a concern regarding the appropriate use of non-patent references as the
‘science-dependence’ of the technology under study. Meyer (2000) has demonstrated that a citation to
a scientific paper in a patent hardly represents any direct link between the cited paper and the patent.
Noyons et al. (1994) have observed that inventors of patents with many non-patent references did not
publish significantly more than inventors of patents with fewer non-patent References

The above mentioned studies highlight some inconsistent findings regarding the influence of
scientific capability on technological performance. The discrepancy is partly a consequence of scholars
using either of the two measures, namely publication volume and non-patent references, to evaluate
scientific contributions to technological innovation without acknowledging their conceptual difference.
Another contributing factor is that existing research has paid little attention to the mechanism through
which scientific research influences technological performance (Fleming and Sorenson, 2004).

In order to improve our understanding of the science–technology relationship, we ought to
recognize the conceptual difference between measuring scientific capability by publication count or
by non-patent references, and explain their respective influences on technological performance.
Drawing upon the absorptive capacity literature, this study suggests that publication count represents
a firm’s capability to generate scientific knowledge, whereas the count of non-patent references
reflects a firm’s capability to apply scientific knowledge towards developing new technologies. We
test the relationship between each correlate and outcome using the publication and patent data of 157
biotechnology firms. The technological performance of firms is measured in terms of forward citations
received by patents issued to the firms. The results show that the capability of firms to generate
scientific knowledge has a significant negative influence on their technological performance. On the
contrary, the capability of firms to apply scientific knowledge has a significant positive effect on their
technological performance.

As a further attempt to reconcile the findings, this study investigates the means through which a
firm’s scientific outcome can accelerate its technological progress. Specifically, we investigate the
contributions of the two scientific capabilities to the outcome of technological search breadth, i.e. when a
firm broadens its search for new knowledge across multiple technology domains to generate useful
technologies. The outcome of technological search breadth is proxied by observing the heterogeneity of
technology classes cited by the patents granted to a firm. The empirical results indicate that a firm’s
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publication count correlates positively with the outcome of technological search breadth, but the effect
of non-patent references is not statistically significant. Taken together, the findings imply that although a
firm’s capability to apply scientific knowledge contributes directly to its technological performance, its
capability to generate scientific publications becomes useful only when it attempts to integrate or
combine diverse technological knowledge in the process of developing useful technologies.

This paper is organized as follows. Section 2 provides a theoretical framework and literature review. It
focuses on the role of firm-level scientific capabilities in the science–technology relationship. Sections 3
and 4 describe the methods and research and measures. The last three sections discuss the research
findings, implications, limitations of the study and directions for future research.

2. Theoretical framework and review of the literature

2.1. The relationship between science and technology

The notion of scientific research stimulating technological performance has been long established
since Adam Smith (Stephan et al., 2007). Scientific research can enhance a firm’s absorptive capacity
(Cohen and Levinthal, 1990; Gambardella, 1992; Lim, 2000), serve as guideposts for technological
investigation (Dasgupta and David, 1994; Autio et al., 1996; Aghion et al., 2009) and the management
of research activities (Owen-Smith, 2001), etc. Thus, a firm’s scientific research capability is expected
to positively influence its technological performance and generate breakthrough technologies
(Rosenberg, 1990). This is more so in the case of high-tech industries like biotechnology, the context
chosen for this study (Zucker and Darby, 2001; Torero, 1998).

Lim (2000) has shown that science-driven firms tend to adopt two different strategies for building
their scientific capabilities. First, firms invest in internal basic research that enables them to generate
scientific findings. Second, firms develop capabilities to absorb scientific knowledge from external
environments and apply this knowledge to the technology development process. Lim (2000) further
suggests that firms need not acquire both types of capabilities, even though prior research points to
the important role of internal basic research in absorbing external knowledge (Gambardella, 1995). He
also posits that firms can develop their absorptive capacity through processes such as engaging in
scientific collaborations, hiring individuals who have undergone rigorous scientific training, reading
scientific papers published in the open scientific domain, etc. The constant engagement of highly
trained scientists via these processes can help firms absorb external knowledge without necessarily
conducting internal basic research. For instance, while firms like Merck invest heavily in internal
scientific research and publish scientific articles, others like Eli Lily acquire absorptive capacity by
leveraging externally generated scientific skills and knowledge.

Our literature review of the science–technology relationship reveals that most studies have
implicitly captured the two types of scientific capabilities, namely the capability to generate scientific
knowledge and the capability to apply scientific knowledge to technology development activities,
using two different measures. Although the absorptive capacity literature makes a conceptual
difference between the two scientific capabilities, the studies on the science–technology relationship
do not explicitly stress the difference in measuring such scientific capabilities. The empirical studies
have measured scientific knowledge generating capability by the number of scientific publications
produced by firms and scientific knowledge application capability by the number of references to non-
patent literature in patents issued to firms. The inconsistent findings surrounding the science–
technology relationship are probably an outcome of using the two measures interchangeably without
recognizing their conceptual difference. Following the recommendations of the absorptive capacity
literature, this paper attempts to investigate the performance influence attributed to the different
measures of scientific capabilities and reconcile the disparate findings by examining their respective
roles in accelerating technological progress inside a firm.

2.2. Scientific capability, technological search breadth and technological performance

To understand how different scientific capabilities are instrumental in the process of generating
useful technologies, we draw on insights from the literature of evolutionary search and investigate the
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importance of science to firms that engage in the search for new knowledge across diverse
technological domains.

Organizations innovate by combining new knowledge with existing knowledge (Kogut and Zander,
1992). Thus, a firm’s search for new technical knowledge is an inevitable part of its technological
innovation process. Two types of search behavior are observed in innovative firms. The first is to look for
new ideas in the neighborhood of research and development (R&D) activities within the firm. The second
type of search requires the firm to span its organizational boundaries and look for external knowledge. In
our study we refer to this boundary spanning search as ‘new knowledge search’. Several studies have
shown that new knowledge search is closely associated with a firm’s capability to generate high-impact
technologies (Rosenkopf and Nerkar, 2001; Ahuja and Lampert, 2001; Ahuja and Katila, 2004).

Prior research suggests that existing knowledge elements can be combined to create novel and
valuable ideas (Tushman and Rosenkopf, 1992). In order to increase the amount of knowledge
elements available for new combinations, a firm has to embark on a broad search for new knowledge.
While different search strategies may hold different search criteria, in this study we define new
knowledge search as a search of diverse technological domains, or ‘technological search breadth’ in
short. When a firm attempts to move beyond existing technological landscapes and search broadly for
different technological elements, it enriches the knowledge pool available to its in-house scientists
and engineers. The enriched knowledge pool creates opportunities for cross-fertilization and cross-
application of ideas, which may result in high-impact technologies. Particularly in the biotechnology
industry, important innovations have evolved through new combinations of ideas found across
multiple disciplines such as molecular biology, chemistry, bio-informatics, etc.

However, the process of combining diverse knowledge elements is not simple and straightforward.
Identifying one fruitful combination among the many possibilities of technological recombination can
be a daunting task. In this situation, scientific capability is known to provide a theoretical lens for firms
to identify and evaluate useful combinations (Fleming and Sorenson, 2004).

How firms successfully recombine technological elements into valuable innovations may depend
on the firms’ understanding of the nature and interdependence of different technological knowledge
elements or their own knowledge structures (Yayavaram and Ahuja, 2008). Scientific knowledge
provides a basic understanding of the phenomena in question and the cause–effect relationships
between technological elements, both of which are vital for recombination. Therefore, how firms
develop their capabilities to generate scientific knowledge will shape their theoretical lens for
discovering the novel ideas that may lead to useful technologies. An excellent example of this in our
research context is the birth of genetic engineering. It is well known that the scientific capabilities of
Dr. Stanley Cohen2 and Dr. Herbert Boyer3 had helped them realize the value of combining the
technique of introducing new DNA into Escherichia coli with the technique of cleaving the double-
stranded DNA molecule, which is the building block of genetic engineering.

Following the arguments presented above, the next section proposes to test the relative performance
impacts of two scientific capabilities, namely the capability to generate scientific knowledge (as
represented by a firm’s publication count) and the capability to apply scientific knowledge to
technological innovation (as represented by non-patent references in patents issued to a firm). The count
of forward citations of patents issued to the firm is used as a proxy for the firm’s technological
performance. The next section also analyzes the respective contributions of the two scientific capabilities
to the outcome of technological search breadth. A firm’s technological search breadth is measured by the
heterogeneity of the technology class of backward citations made in patents issued to the firm.

3. Data

The biotechnology industry is an ideal context for this study because it is characterized by intense
innovation and widely recognized for valuing scientific research. The Plunkett’s4 Directory that

2 A professor from the Stanford University.
3 A professor from the University of San Francisco.
4 Plunkett’s Biotech and Genetics Industry Almanac 2005: the only comprehensive guide to biotechnology and genetic

companies and trends/editor and publisher: Jack W. Plunkett.
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consists of 437 publicly-listed biotechnology firms was used as the primary data source for drawing the
sample. Prior studies have typically relied on various biotechnology directories for data collection (Gulati
and Singh, 1998; Stuart et al., 1999). The 437 publicly-listed companies are considered to be leaders in all
facets of the biotechnology industry. Though the directory is known for its carefully researched volumes
with frequent updates, it should be acknowledged that the directory concentrates only on leading firms
(measured in terms of sales volume) unlike other directories that have a comprehensive list of
companies from this industry. Nevertheless, our sample is comparable to the samples from other
biotechnology-related studies that have appeared in internationally refereed research journals.

Most firms in this directory are based in the U.S. However, about 70 have their headquarters in
other countries such as Canada, Japan, UK, India, Switzerland, etc. The directory also includes firms
from multiple areas of biotechnology. There are 3 firms from agriculture, 13 firms from infotech, 100
firms from chemical manufacturing, and 321 firms from health care.

The sample firms’ patents by issue date from 1990 to 2000 were obtained from the NUS-MBS patent
database5 which contains all patent data managed by the United States Patent and Trademark Office
(USPTO). The publication data of the sample firms were gathered from the Web of Science, ISI Science

Citation Index (SCI). The SCI is an excellent source for covering a broad range of basic and applied scientific
journals (Lim, 2004). Finally, Compustat Global was used to collect the financial data of these firms.

The US patent classification system comprises of over 100,000 patent subclasses aggregated to
about 400 three-digit patent classes. We used the three-digit patent classes as listed in Table 1 to
identify all the patents that belong to the biotechnology industry. These classes were chosen with
reference from the USPTO Technology Profile Reports and from prior research (Lim, 2004). Excluding
firms that did not have patents in the specified classes between 1990 and 2000, the final sample was
reduced to 222 firms. The total numbers of patents and publications used in the final analysis are
10,646 and 100,375, respectively.

4. Measures

4.1. Technological performance (forward citation)

The dependent variable is cumulative forward citation frequency accrued to each patent. We count
all forward citations received by each patent at of the end of 2004. Every patent, by law, must cite
previous patents that relate closely to its own technology. Past research demonstrates that the
number of forward citations a patent receives correlates highly with its technological importance
(Trajtenberg, 1990; Albert et al., 1991). Forward citation is also used in representing the extent to
which the patent is widely diffused because of its technological importance.

The number of products introduced by a firm would be a good alternative measure of technological
performance. However, we do not use this product measure for two reasons. First, currently, the
upstream activities of the value chain in this industry are typically performed by firms competent in
those areas, whereas other firms take care of FDA approval and commercialization. Hence, a firm that
introduces a new product into the market may not necessarily be the one fully responsible for its
technological development. Second, the approval of a new drug product, which is often time

Table 1
U.S. patent classes.

Class Description

424 Drug, bio-affecting and body treating compositions

435 Chemistry: molecular biology and microbiology

436 Chemistry: analytical and immunological testing

514 Drug, bio-affecting and body treating compositions

530 Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof

536 Organic compounds

800 Multicellular living organisms and unmodified parts thereof and related processes

5 http://mbs.edu/patents/.
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consuming, depends significantly on the focal firm’s experience in dealing with external institutions,
such as hospitals for clinical trials and the U.S. Food and Drug Administration (FDA), rather than on
technological competency alone. Therefore, a drug that fails to gain FDA approval may not imply a lack
of technological performance in the focal firm. Similarly, not all useful patents will lead to immediate
drug development within the focal firm. For these reasons, we believe that patent count is a more
appropriate measure of a firm’s capability to generate valuable technologies.

4.2. Publication volume

This variable measures the number of scientific publications produced by the focal firm during the
year of observation in which a patent was filed. The volume of scientific publications indicates the
capability of the firm to generate scientific knowledge (Gittelman and Kogut, 2003). For all publications
in Web of Science there is a field called ‘‘Organization Name’’ that typically lists the organizations the
authors are affiliated to. To obtain the publication volume measure, we searched Web of Science for all
scientific publications that had our sample firms listed under the ‘‘Organization Name’’ field.

4.3. Non-patent reference

Non-patent reference is the frequency count of references to non-patent literature, e.g. scientific
literature, in each patent issued to a firm. Every patent is required to list the prior art that it builds
upon. This includes both patent and non-patent references. It has been observed by Fleming and
Sorenson (2004) that about 69% of non-patent references are from peer-reviewed scientific journals.
The non-patent references that denote the science intensity of patents represent a firm’s ability to
apply scientific knowledge to its technological activities (Ahuja and Katila, 2004). In this study, the
average number of non-patent references cited by a patent is 18.

4.4. Breadth of new knowledge search (technological search breadth)

Breadth of new knowledge search refers to the breadth of technological search conducted by the
focal firm. This measure is based on the technology class of patents cited by each patent issued to the
firm (after removing self-citations). Specifically, technological search breadth as represented in patent
i is calculated as

1�
Xni

j¼1

S2
i j ðone minus the Herfindahl concentration index of the technology classesÞ

where Sij refers to the proportion of citations made by patent i to the patents in technology class j (after
removing self-citations). The variable ni varies for each patent depending on the number of different
technology classes that the focal patent cites. The three-digit technology class is considered in the
measure. This measure ranges between 0 and 1; a greater value implies a higher degree of
technological search breadth is associated with the patented technology. This measure corresponds to
the ‘‘originality’’ measure in the work of Jaffe and Trajtenberg (2002).

4.5. Control variables

Seven control variables related to firm-level and patent-level attributes are included in the
regression analysis. The total count of forward citations received by the focal firm may be explained by
various factors such as firm size, firm age and technological strength. Controlling for these variables
should help reveal the performance effects of scientific capabilities.

4.6. Firm-level attributes

4.6.1. Firm size, firm age, R&D expenditure and technological strength

Firms may be highly innovative for different reasons. Larger firms can achieve high performance
because of their economies of scale and scope, whereas younger firms may possess creative ideas
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because of their organic structures and talented founders (Nystrom et al., 2002). To control for these
effects, we included the size of the firm as measured by the number of employees and the age of the
firm as measured by the number of years since the firm was founded. A firm’s performance can also be
influenced by its technological resources and strength. We controlled for a firm’s technological
resources by considering the firm’s R&D expenditure and its technological strength as measured by
the total number of patents granted to the firm in the year of observation (Cardinal and Hatfield, 2000).
We included the logarithmic values of firm size, firm age and R&D expenditure in our analysis.

4.7. Patent-level attributes

4.7.1. Technology class, patent age and year-fixed effect

Patents belonging to a certain technology class may inherently be more frequently cited than
others. Similarly, patents that have elapsed for many years since their filing dates are likely to be cited
more often. We used technology class dummy variables and patent age to control for these effects. We
also used year-fixed effects to capture the differences in citation probability across different years.

The summary data for the dependent and independent variables and the correlation between the
variables are reported in Table 2.

5. Analysis

The dependent variable is forward citation count, thus count models are most appropriate for this
research. The Poisson model and the negative binomial model are frequently used for analyzing count
data. As the patent citations exhibit overdispersion, the negative binomial model is best suited for
estimating an overdispersed parameter. The results of the negative binomial regression are presented
in Table 3. All specifications include fixed effects for both technology class and application year of the
patents. We used robust standard errors adjusted for clustering of the firms to control for random firm
effects. Though our sample has 222 firms and 10,606 patents, due to missing observations, the final
regression results are based on 157 firms and 7648 patents.

Model 1 presents the regression coefficients for all of the control variables. As expected, firm age
has a negative impact on the forward citation of patents (p<0.01). Firm size and R&D expenditure do
not have significant associations with the forward citation of patents. A plausible explanation for the
insignificant role of R&D and firm size is that increased R&D spending and economies of scale need not
necessarily increase the quality of technologies, as measured by the forward citations. The
technological strength of a firm, as measured by the number of patents it generates, is negatively
associated with the forward citation of patents (p<0.01). This shows that the quality of patents is
inversely proportional to the quantity generated. The significant (p<0.01) positive effect of patent age
shows that older patents receive more citations.

Model 2 includes the first scientific capability variable, publication volume. In contrast to our
prediction, the publication volume variable is negatively associated with the forward citation of

Table 2
Descriptive statistics and correlations.

No. Variables Mean Std. dev Min Max 1 2 3 4 5 6 7 8

1 Forward citation 6.34 11.87 0 233 1

2 Publication volume 136.39 222.74 0 1272 �0.06* 1

3 Non-patent reference 18.36 35.14 0 492 0.05* �0.01 1

4 Breadth of new

knowledge search

0.35 0.29 0 0.98 0.11* �0.06* 0.16* 1

5 Firm age 3.37 1.21 0 5.01 �0.18* 0.14* �0.23* �0.01* 1

6 Firm size 6.82 2.32 0 11.69 �0.10* 0.00 �0.06* �0.03* 0.53* 1

7 R&D 3.04 2.15 �0.55 12 0.17* �0.30* 0.05* 0.06* �0.57* �0.69* 1

8 Technological

strength

62.86 61.33 1 240 �0.16* 0.18* 0.02 0.00 0.46* 0.62* �0.65* 1

9 Patent age 10.12 2.80 7 17 0.28* 0.11* �0.15* 0.03* 0.07* 0.01 0.06* �0.09*

* p<0.05.
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Table 3
Negative binomial regression in testing the impact of scientific capability, breadth of new knowledge search and control variables on the forward citation of patents.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Constant 0.2256

[0.3803]

0.2256

[0.3803]

�0.2060

[0.4133]

�0.2205

[0.3434]

�0.1576

[0.3581]

�0.0680

[0.3177]

�0.3817

[0.3750]

�.02292

[0.3441]

Publication volume �0.0004***

[0.0001]

�0.0004***

[0.0001]

0.0000

[0.0001]

�0.0000

[0.0001]

Non-patent references 0.0033***

[0.0012]

0.0026***

[0.0012]

0.0042**

[0.0021]

0.0046***

[0.0020]

Breadth of new knowledge search 0.6320***

[0.1621]

0.5741***

[0.1703]

0.7782***

[0.1875]

0.6375***

[0.1654]

0.7930***

[0.1816]

Publication volume�breadth

of new knowledge search

0.0011***

[0.0004]

0.0012***

[0.0004]

Non-patent references

�breadth of new knowledge search

0.0029

[0.0028]

0.0034

[0.0026]

Firm age �0.2483

[0.0576]

�0.2483***

[0.0576]

�0.2271***

[0.0616]

�0.2394***

[0.0532]

�0.2208***

[0.0546]

�0.2379***

[0.0506]

�0.2199***

[0.0569]

�0.2171***

[0.0541]

Firm size 0.0416

[0.0350]

0.0416

[0.0350]

0.0645**

[0.0355]

0.0479*

[0.0335]

0.0296

[0.0325]

0.0270

[0.0322]

0.0482*

[0.0333]

0.0261

[0.0321]

R&D 0.0209

[0.0316]

0.0209

[0.0316]

0.0450*

[0.0275]

0.0282

[0.0287]

0.0073

[0.0291]

0.0063

[0.0304]

0.0293

[0.0275]

0.0065

[0.0289]

Technological strength �0.0022

[0.0006]

�0.0022***

[0.0006]

�0.0027***

[0.0006]

�0.0023***

[0.0006]

�0.0022***

[0.0005]

�0.0019***

[0.0006]

�0.0024***

[0.0006]

�0.0021***

[0.0005]

Patent age 0.1732

[0.0218]

0.1732***

[0.0218]

0.1766***

[0.0216]

0.1744***

[0.0213]

0.1797***

[0.0218]

0.1755***

[0.0215]

0.1779***

[0.0214]

0.1792***

[0.0217]

Log likelihood �20554.75 �20554.75 �20541.31 �20495.47 �20466.44 �20469.78 �20478.20 �20450.34

No. of observations 7648 7648 7648 7648 7648 7648 7648 7648

Standard error is provided in the parentheses. Technology class dummy variables and year-fixed effect were included but not reported.
* p<0.1.
** p<0.05.
*** p<0.01.
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patents (p<0.01). A plausible explanation for this anomaly is presented in Section 7. On the contrary,
the second scientific capability measure, the non-patent references introduced in Model 3, is
positively associated with the forward citation of patents.

Model 4 presents regression coefficients when technological search breadth is included. As
predicted, the broader the technological search the greater the technological performance. Model 5
presents the results when all three variables are considered together. The results are consistent with
previous models.

Model 6 presents the results when the interaction term between publication volume and
technological search breadth is introduced. Similarly, Model 7 adds the interaction term between non-
patent references and technological search breadth. Model 8 presents the regression results when
both interaction terms are added. The results show that the interaction term for technological search
breadth and publication volume is positively significant (p<0.01), but that the interaction term for
technological search breadth and non-patent references is not statistically significant (after
controlling for the number of publications in Model 8). The next section presents a detailed
discussion of the results.

6. Discussion, implications, and directions for future research

The notion of scientific capability has been widely adopted in many empirical studies of the
science–technology relationship, but its association with the technological performance of the firm, as
measured by the forward citation of firm patents, receives mixed findings. While scientific capability
is typically measured by (1) publication volume and (2) non-patent references, prior studies use these
measures interchangeably to indicate the degree or importance of science contributing to a firm’s
technological development. This study aims to empirically distinguish the two measures and highlight
that they have different implications for technological performance. Using panel data from 157 firms
and 7648 patents in the biotechnology industry, the longitudinal analysis shows that non-patent
references have a direct positive effect on a firm’s technological performance, whereas publication
volume has a negative impact on technological performance.

To further understand the two measures of scientific capability we investigated the association
between them. We observed publication volume to be negatively correlated with the non-patent
references in our data, indicating the possibility that firms with a high publication volume failed to
apply their scientific knowledge to develop patented inventions. We suspect that the lack of an ability
to apply scientific knowledge can be attributed to a knowledge gap between the science and the
technology domains within firms. The knowledge gap prevents these firms from exploiting scientific
knowledge in their technology development endeavors (Gittelman and Kogut, 2003). The gap between
basic and applied knowledge can possibly explain the mixed findings regarding the science–
technology relationship.

To verify our conjecture, we examined the extent to which the publications of individual sample
firms are being self-cited in their patents. We first identified all publications produced by the focal firm
and all patents citing those publications. We then checked the first assignee name of the citing patents
to see whether the patents belong to the focal firm. We found that approximately 2% of the sample
firms’ scientific publications are cited by their own patents. Notably, this result is consistent with
Noyons et al.’s (1994) observation about patent inventors. He observed that inventors with a greater
number of publications are not necessarily associated with a greater number of non-patent references
in their patents. It is the flow of knowledge across scientific publications and patented inventions that
determines the influence of a firm’s scientific capability on its own technological performance
(Azoulay et al., 2007).

The above findings have important empirical implications. Firstly, the results suggest that the
influence of scientific capability on a firm’s technological performance may vary depending on the
way that scientific capability is measured. Scholars need to be wary of conceptualization and
measurement of scientific capability when interpreting their results about the science–technology
relationship. Secondly, scholars investigating the science–technology relationship should give due
attention to the knowledge gap that exists between the science and technology domains and also
investigate mechanisms that could possibly bridge them (Gittelman and Kogut, 2003).
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We further examined the difference between the two scientific capability measures in contributing
to a firm’s ability to recombine diverse technological elements. The results suggest that the
publication volume measure enhances a firm’s recombination capability, but the non-patent reference
measure does not. This suggests that the tacit knowledge attained through the process of publishing
papers provides firms with a useful lens to comprehend the attributes of new technological elements
and their interdependency and to predict the fruitful combinations that lead to valuable innovations.
Existing studies suggest that scientific capability facilitates technological recombination (Ahuja and
Katila, 2004).

However, Henderson and Cockburn (1994) argue that the integration of diverse knowledge in the
form of valuable innovations depends on a firm’s core competence, which is not measurable by mere
R&D investments. While a firm’s scientific capability can be captured in different ways, the process
through which a firm searches for new knowledge across multiple technological areas, such as
knowledge boundary spanning activities, can only be assisted by the firm’s experience in basic
research or research publications.

This research is subject to the following limitations. The first limitation pertains to patent data and
holds for any study on the science–technology relationship that uses patents. Restricting the scope of
this study to patent data has several drawbacks because not all companies have the same propensity
to file patents for their inventions; some firms may limit their patents to only the most successful
innovations, etc. Nevertheless, it is widely recognized that in high-tech industries firms actively
engage in a patent race and that patents are considered a good indicator of technological performance
(Levitas et al., 2006; Gittelman and Kogut, 2003; Sorenson and Fleming, 2004; Ernst, 1998). Future
studies can investigate differences in the influence of the two scientific capability measures on other
firm-level performance variables like the number of new products generated and revenue from
commercializing and licensing patents (Lai and Che, 2009).

The second limitation points to the forward and backward citations of patents, which we used for
measuring our dependent and independent variables. It is noted that about 40% of the citations in
patents are added by patent examiners for legal reasons (Alacer and Gittelman, 2006). However, this
limitation is mitigated by the way that citations are used in the study. Forward citations, whether
made by firms or included by examiners, can be said to represent the value of the patent. The breadth
of new knowledge search measure, even if some of the citations were included by examiners, signifies
that the focal firm has implicitly made use of the knowledge. As patents issued after 2000 explicitly list
citations included by examiners, future studies can investigate this phenomenon after excluding the
examiner’s citations.

The third limitation is pertaining to publications. Not all firms involved in scientific research have
the inclination to disclose their findings through publishing. Even among publications, articles can be
classified as basic and applied (Lim, 2004). A fine grained approach to categorizing publications,
citations and co-citations could be a possible avenue for future research and such a study could
provide important insights into the science–technology relationship (Deeds, 2001; Frenken et al.,
2005).

Fourth, a count of all non-patent references was taken into consideration when measuring
scientific capability. A more appropriate measure would have been to consider citations to scientific
publications. However, this limitation is to some extent mitigated by the observation by Fleming and
Sorenson (2004) that the majority of non-patent references are in fact citations to scientific
publications. Some scholars even question the appropriateness of using non-patent references to
measure the science intensity of patents (Onder and Bart, 2008).

7. Conclusion

Understanding the science–technology relationship is of strategic importance for making R&D
decisions. While several studies have explored this relationship, our study extends this line of research
by highlighting the difference between the two measures of scientific capability that have been widely
used by scholars, and demonstrates their varied effect on a firm’s technological performance. Our
findings suggest that scholars must be wary of interpreting results pertaining to the science–
technology relationship, depending on the operationalization of the variables. By delineating the
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difference between the two measures of scientific capability, our research makes an important
empirical contribution by explaining the mixed findings regarding the science–technology relation-
ship in previous studies.
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